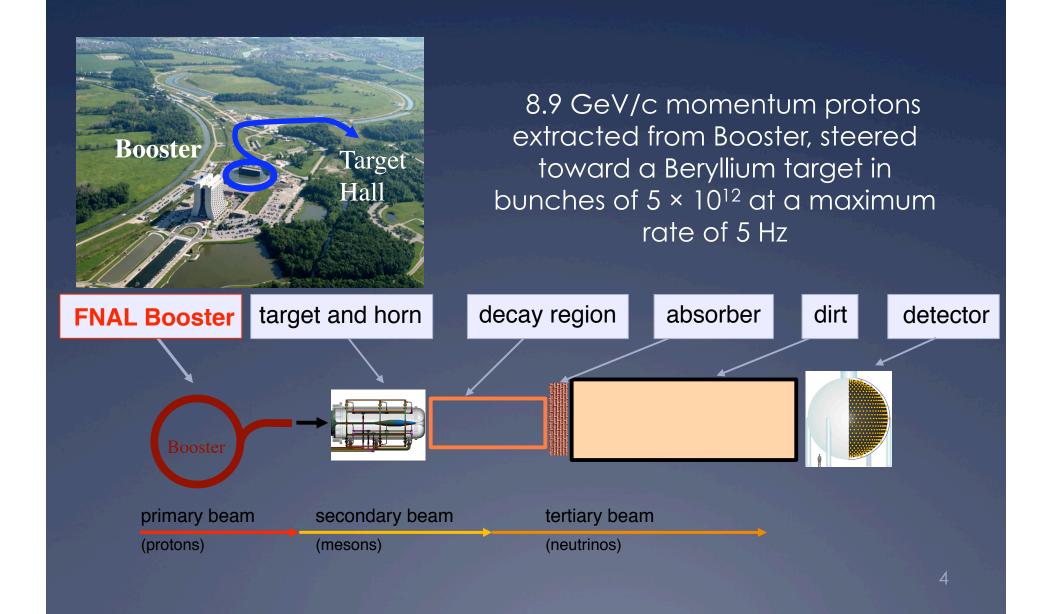
Separating ν 's and $\overline{\nu}$'s with a non-

magnetized detector

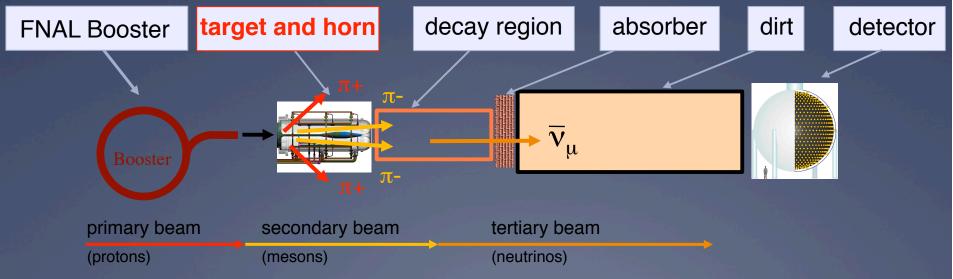

Joe Grange
University of Florida
Project X Physics Study

Outline

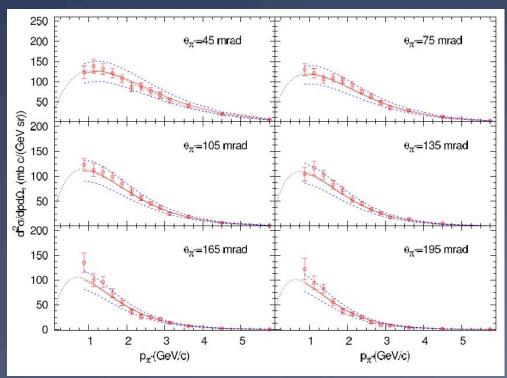

- MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB)
- 2. Three measurements of ${f v}_{\mu}$ flux in BNB ${f \overline{v}}_{\mu}$ beam
- 3. Technique utility out to PX era

- MiniBooNE and wrong-sign contamination in the Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam
- 3. Technique utility out to PX erc

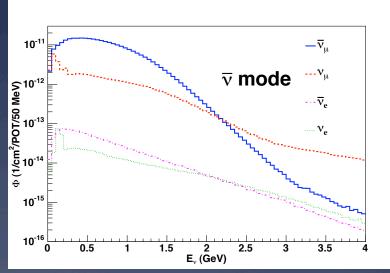
Booster Neutrino Beam



Booster Neutrino Beam


Magnetic horn with reversible polarity focuses either neutrino or anti-neutrino parent mesons

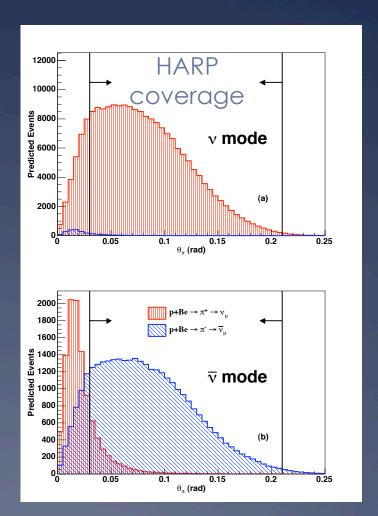
("neutrino" vs "anti-neutrino" mode)



MiniBooNE Flux

* Flux prediction for "right signs" based exclusively on external data - no in situ tuning

HARP collaboration, Eur. Phys. J. C52 29 (2007)



MiniBooNE collaboration, Phys. Rev. D79, 072002 (2009)

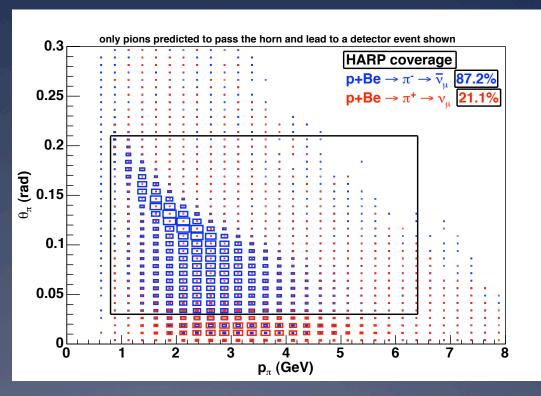
- Dedicated pion production data taken by HARP experiment to predict neutrino flux at MiniBooNE
- A spline fit to these data brings flux uncertainty to ~9%

MiniBooNE Flux

- * ~9% errors only true for pions produced in HARP-covered phase space
- Due to large proton
 background, pion
 production below
 30 mrad not reported
- * While not a serious issue for neutrino mode (top plot), severe complication for antineutrino mode (bottom)

Why so different?

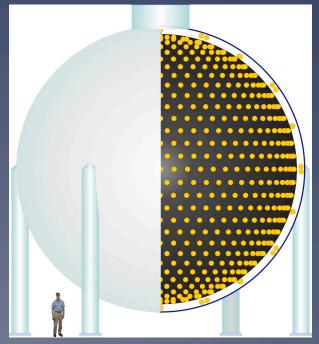
* Cross section: at MiniBooNE energies (E,~1 GeV), neutrino cross section ~ 3x higher than anti-neutrino


$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \pm B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$

Flux: leading particle effect creates ~ 2x as many π+ as π-

How wrong signs contribute to flux

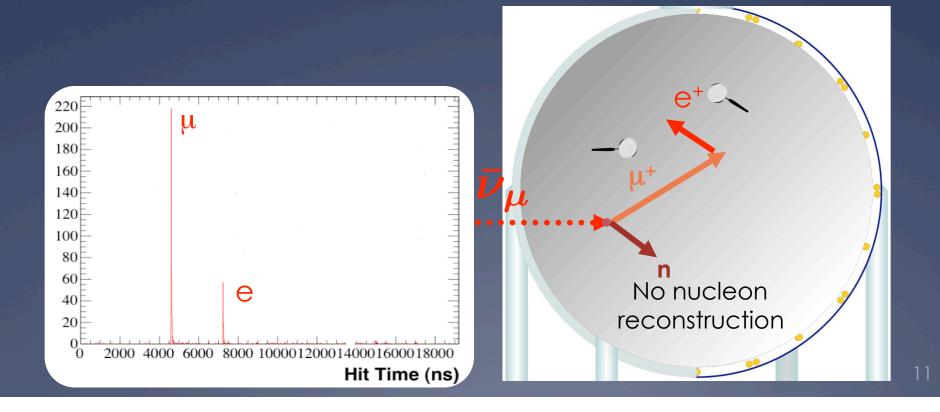
* Wrong-sign pions escape magnetic deflection and contribute to the anti-neutrino beam via low angle production



* In anti-neutrino mode low-angle production is a *crucial* flux region and we do not have a reliable prediction

MiniBooNE detector

- * 6.1m radius sphere houses 800 tons of pure mineral oil.
- * 1520 Photo Multiplier Tubes uniformly dispersed in 2 regions of tank (240 veto, 1280 inner tank)
- * No B-field!
- * in situ calibration systems:
 - Laser system calibrates PMT response, tracks oil quality
 - Cosmic ray muon system
 calibrates detector response to
 muons and associated decay
 michel electrons


Nucl. Instr. Meth. A599, 28 (2009)

CCQE Events in MiniBooNE

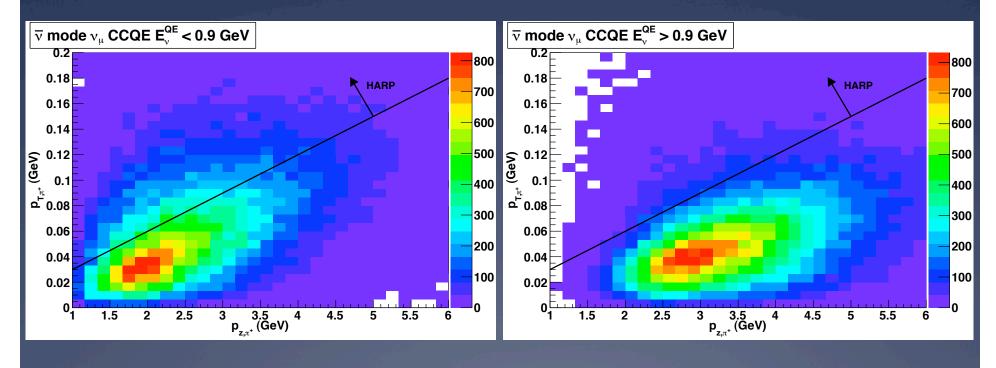
CCQE is the most prevalent interaction at MiniBooNE's energy range, accounting for ~40% of all events.

- Booster Neutrino Beam (BNB)
- 2. Three measurements of ${f v}_{\mu}$ flux in BNB $\overline{{f v}}_{\mu}$ beam
- 3. Technique utility out to PX era

- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ- nuclear capture)

- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture)

First measurement of the ν_μ content of a $\overline{\nu}_\mu$ beam using a non-magnetized detector.


Phys. Rev. D81: 072005 (2011)

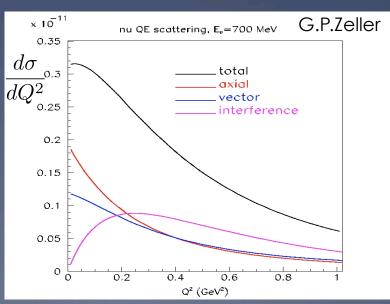
- * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+)
 - * Crucial application of BooNE-measured ν_{μ} σ 's

$$\frac{\text{Rate}^{\text{data}}}{\text{Rate}^{\text{sim}}} = \frac{\Phi^{\text{true}} \times \sigma}{\Phi^{\text{sim}} \times \sigma} = \frac{\Phi^{\text{true}}}{\Phi^{\text{sim}}}$$

* The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction

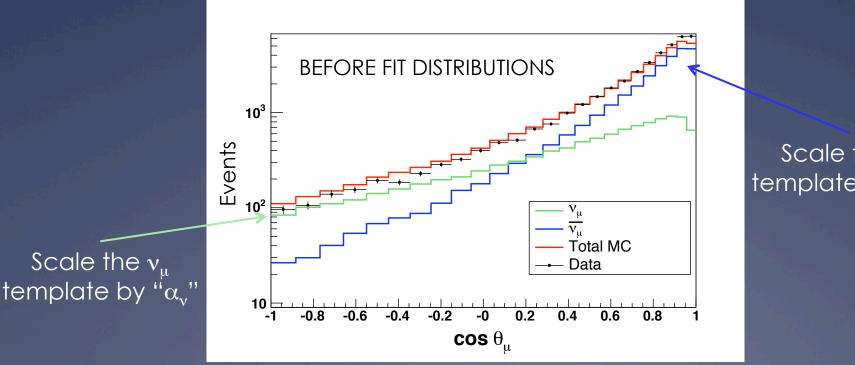
* Important to bin in E_{ν} as finely as possible to check ν_{μ} flux spectrum

Different energies have different relative HARP coverage too - might expect flux accuracy to be f(E_v)


- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture)

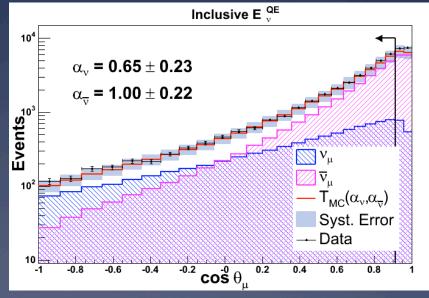
Fitting the outgoing muon angular distribution

* Neutrino vs anti-neutrino CCQE cross sections differ exclusively by an interference term that changes sign between the two


$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 |V_{ud}|^2}{8\pi E_{\nu}^2} \left[A(Q^2) \pm B(Q^2) \left(\frac{s-u}{M^2} \right) + C(Q^2) \left(\frac{s-u}{M^2} \right)^2 \right]$$

* The divergence is more pronounced at higher Q², which is strongly correlated with backward scattering muons

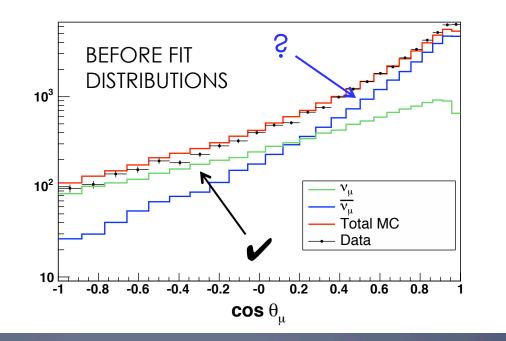
Fitting the outgoing muon angular distribution


* We form a linear combination of the neutrino and anti-neutrino content to compare with CCQE data:

Scale the $\overline{\mathbf{v}}_{\mathbf{n}}$ template by " $\alpha_{\overline{\nu}}$ "

Fitting the outgoing muon angular distribution

- * Results indicate the ν_{μ} flux is over-predicted by ~30%
- * Fit also performed in bins of reconstructed energy; consistent results indicate flux spectrum shape is well modeled

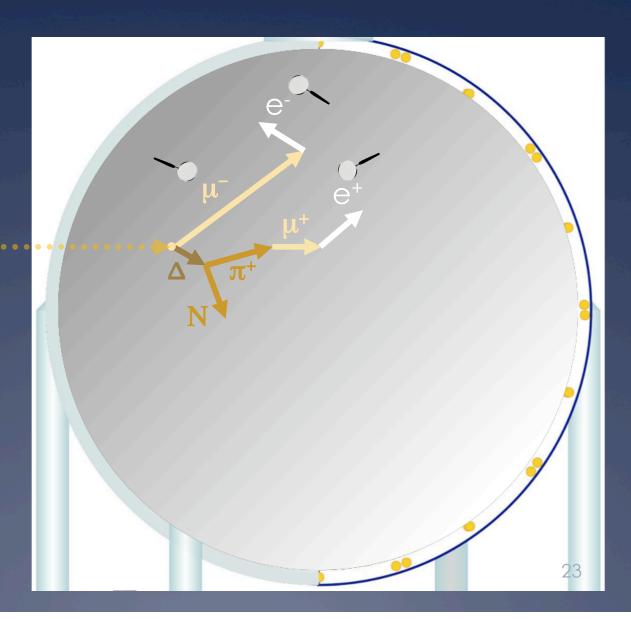


$\mathbf{E}^{\mathbf{QE}}_{\bar{\nu}}(\mathrm{MeV})$	$lpha_ u$	$lpha_{ar{ u}}$
< 600	0.65 ± 0.22	0.98 ± 0.18
600 - 900	0.61 ± 0.20	1.05 ± 0.19
> 900	0.64 ± 0.20	1.18 ± 0.21
Inclusive	0.65 ± 0.23	1.00 ± 0.22

Model dependence

* Though the ν_{μ} CCQE scattering template is known (from our measurement), the result is correlated to the (unknown) anti- ν_{μ} distribution and therefore biased

* In Project X era, σ's should be much better known and this technique could be very powerful

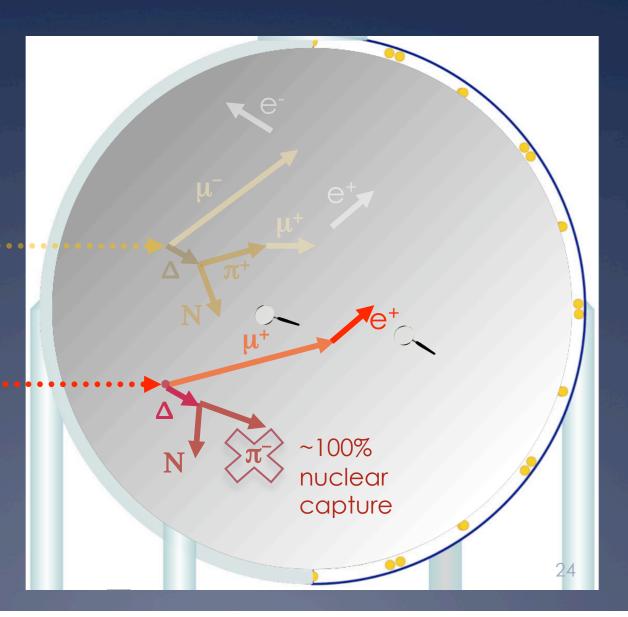

- * Three independent and complementary measurements of the wrong-sign background.
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ nuclear capture)

$CC\pi^+$ sample formation

 u_{μ}

The neutrino induced resonance channel leads to three leptons above Cherenkov threshold

- 1. Primary muon
- 2. Decay electron
- 3. Decay positron



$CC\pi^+$ sample formation

 u_{μ}

Due to nuclear π⁻
 capture, the
 corresponding
 anti-neutrino
 interaction has
 only two:

- 1. Primary muon
- 2. Decay positron

$CC\pi^+ \nu_{\mu}$ flux measurement

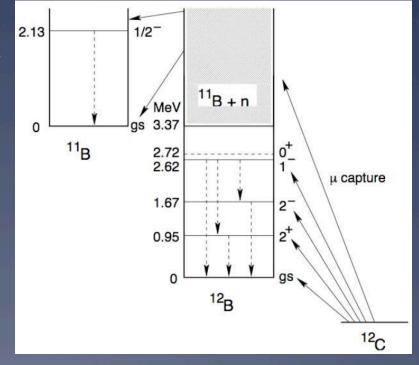
- * With the simple requirement of two decay electrons subsequent to the primary muon, we isolate a sample that is ~80% neutrino-induced.
- * Data/simulation ratios in bins of reconstructed energy indicate the neutrino flux is overpredicted in normalization, while the spectrum shape looks fine

700 - 800	0.79 ± 0.10	
800 - 900	0.81 ± 0.10	
900 - 1000	0.88 ± 0.11	
1000 - 1200	0.74 ± 0.10	
1200 - 2400	0.73 ± 0.15	
Inclusive	0.76 ± 0.11	

 $\nu_{\rm u} \Phi$ scale

 0.65 ± 0.10

E_v∆ (MeV)


600 - 700

CC π + σ measurement: Phys. Rev. D83, 052007 (2011)

- * Three independent and complementary measurements of the wrong-sign background:
 - Fitting the angular distribution of the CCQE sample for the neutrino and anti-neutrino content
 - 2. Comparing predicted to observed event rates in the $CC\pi^+$ sample
 - 3. Measuring how often muon decay electrons are produced (exploits μ^- nuclear capture)

- * CC events typically observe both μ +e two reasons why we may not observe the decay electron:
 - 1. Michel electron detection efficiency
 - 2. μ^- nuclear capture (ν_μ CC events only)
- * We isolate a > 90% CC sample for both μ -only and μ +e samples

- * ~8% of stopped μ^- captures on 12 C, but some nuclear de-excitation products (γ 's,n's) can fake Michel electron
 - "regain" Michel-like event
 following ~6% of μ⁻ captures
- * v-mode data has very little wrong-sign contribution, so we use the observed μ+e to μ-only migration rate to calibrate nuclear deexcitation and Michel detection models

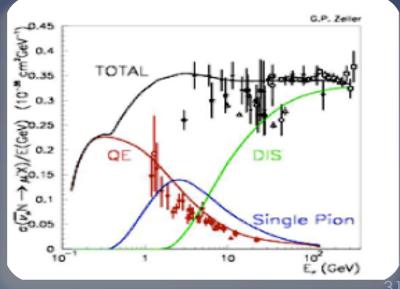
* By requiring (μ -only/ μ +e)^{data} = (μ -only/ μ +e)^{MC} and normalization to agree in the μ +e sample we can calculate a v_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$

$$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$

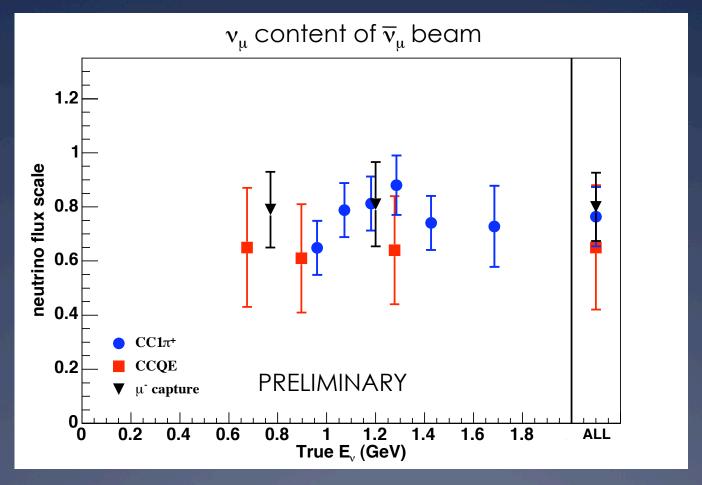
Predicted neutrino content in the μ +e sample, for example

* By requiring $(\mu\text{-only}/\mu\text{+e})^{\text{data}}$ = $(\mu\text{-only}/\mu\text{+e})^{\text{MC}}$ and normalization to agree in the $\mu\text{+e}$ sample we can calculate a v_{μ} flux scale α_{ν} and a rate scale $\alpha_{\bar{\nu}}$

$$\frac{\mu}{\mu + e}^{\text{data}} = \left(\frac{\alpha_{\nu} \nu^{\mu} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu}}{\alpha_{\nu} \nu^{\mu + e} + \alpha_{\bar{\nu}} \bar{\nu}^{\mu + e}}\right)^{\text{MC}}$$


Results:

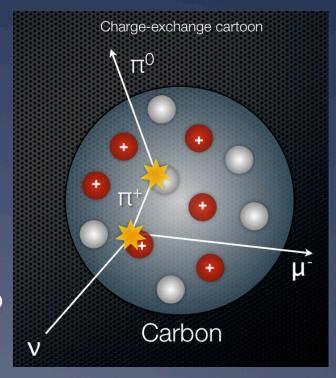
PRELIMINARY


Parameter	$E_{\nu}^{QE} ({ m GeV})$		
	< 0.9	> 0.9	All
$\alpha_{ u}$	0.79 ± 0.14	0.81 ± 0.16	0.80 ± 0.13
$lpha_{ar{ u}}$	1.14 ± 0.22	1.14 ± 0.22	1.14 ± 0.22

Model dependence?

- * The μ +e sample is ~60% anti- v_{μ} , how much model dependence enters from anti- v_{μ} σ 's?
- * Flux measurement negligibly sensitive to anti- v_{μ} σ : model would have to be wrong by > 50% to see an impact on extracted v_{μ} Φ (it's not)
- * This is accomplished with 8% μ⁻ capture for carbon. Can do much better with argon at ~75%!

Neutrino flux measurement summary



Discrepancy with prediction appears to be in normalization only
 flux shape is well modeled. 13% error on final measurement

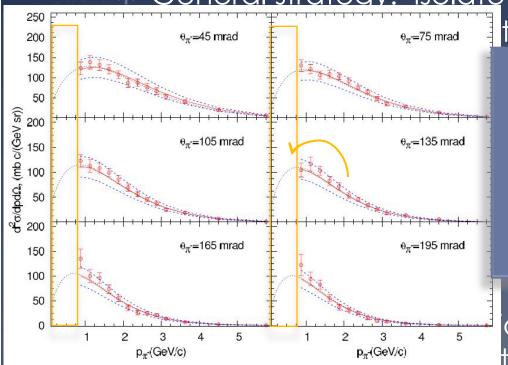
Using your own σ measurements

* Most detector errors cancel by correcting anti- ν mode MC for σ 's observed in the ν exposure

* Similar to two-detector osc experiments, but instead of one beam + 2 detectors, we use two beams + one detector

Φ measurement insensitive to FSI!

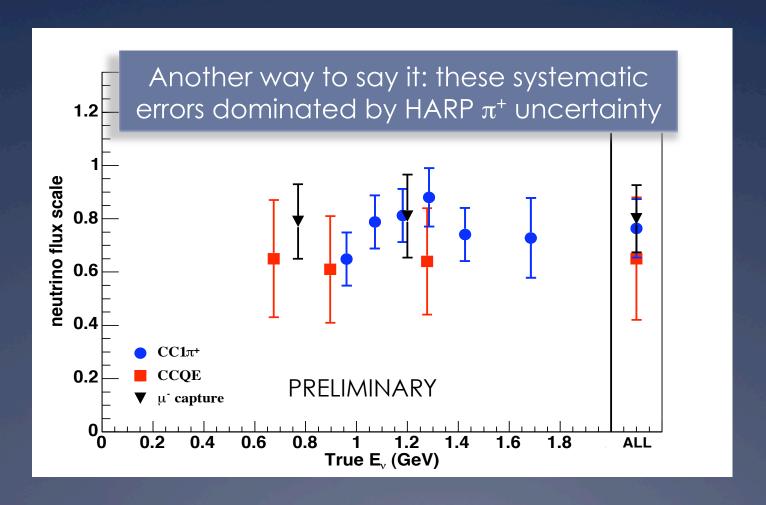
Strategy revisited


- * General strategy: isolate samples sensitive to the ν_μ beam content, apply the measured cross sections from neutrino mode (CCQE, CC π^+)
 - * Crucial application of BooNE-measured ν_{μ} σ 's

$$\frac{\text{Rate}^{\text{data}}}{\text{Rate}^{\text{sim}}} = \frac{\Phi^{\text{true}} \times \sigma}{\Phi^{\text{sim}} \times \sigma} = \frac{\Phi^{\text{true}}}{\Phi^{\text{sim}}}$$

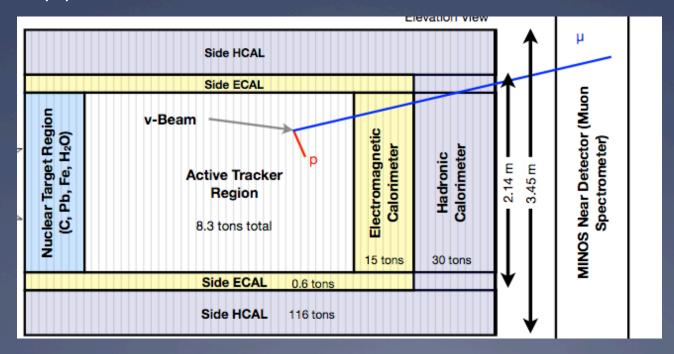
* The level of data-simulation agreement then reflects the accuracy of the ν_μ flux prediction

Strategy revisited


* General strateay: isolate samples sensitive to the

Takes hadro-production data, uses it to place similar constraints on the flux region not measured

on agreement then the $u_{_{\mathfrak{U}}}$ flux prediction


Strategy revisited

- 1. Booster Neutrino Beam (BNB)
- 2. Three measurements of v_{μ} flux in BNB \overline{v}_{μ} beam
- 3. Technique utility out to PX era

Current and future expts

- * Nova (neither detector magnetized)
- * Minerva: can get powerful statistical increases, more kinematic coverage (via μ angle) if use μ's stopped in main detector

Current and future expts

- * LBNE: at user's meeting we heard Steering Group "strongly favors" new beamline with single LAr-TPC detector at Homestake.
- * If no B-field, μ^- capture technique could be very powerful in wrong-sign discrimination w/o ND
 - * 8% μ^{-} capture in carbon gives enough statistical power to separate ν from anti- ν in energy bins, argon has ~75% Phys Rev C 35 ,2212 (1987)
 - * almost event-by-event discrimination without Bfield!
 - * ICARUS has demonstrated Michels can be reconstructed well in argon Eur Phys J C33, 233 (2004)

Other handles

- * Fit μ lifetime to combination ν + anti- ν templates
 - * different way of using μ capture
- * Nuclear recoil for "classical" CCQE, expect outgoing p for v_{μ} , outgoing n for anti- v_{μ} events. A few issues:
 - * meson exchange currents predict combo. of p+n ejection in both cases (unclear energy dependence, nucleon kinematics)
 - * final state interactions
 - * proton detection modeling
 - * we ought to be much better informed come the PX era

Conclusions

- * Though MiniBooNE is unmagnetized, modelindependent statistical techniques measure the ν_μ content in the ν_μ beam to ~13% uncertainty
- * This is the first demonstration of a set of techniques that could well be used in the near future for CP-violation, mass hierarchy and σ measurements